Deoximation with hexamethylenetetramine-bromine supported on alumina in non-aqueous condition[†]

Yahya Sh Beheshtiha*, Majid M Heravi*, Nooshin Sarmad and Rahim Hekmat Shoar

Department of Chemistry, School of Sciences, Azzahra University, Vanak, Tehran, Iran

Hexamethylenetetramine-bromine on alumina rapidly regenerates carbonyl compounds from their corresponding oximes in non-aqueous condition.

Keywords: hexamethylenetetramine-bromine, deoximation, alumina

Oximes are used not only to isolate and purify but also to protect¹ carbonyl compounds during multistep syntheses. The regeneration of carbonyl compounds from their oximes is an important reaction and it has assumed an added importance after the discovery of the Barton reaction in which oximes are produced from non-carbonyl compounds.²

Several methods for the regeneration of carbonyl compounds from their oximes such as pyridinium chlorochromate,³ pyridinium chlorochromate,⁴ triethylammoniumchlorochromate,⁵ chromic-anhydride-chlorotrimethylsilane,⁶ dinitrogen tetraoxide,⁷ titanium silicate,⁸ N-haloamide,⁹ manganese triacetate,¹⁰ Dess-Martin periodinane,¹¹ tetrabutylammonium peroxydisulfate,¹² clay supported ammonium chlorochromate¹³ and clayfen¹⁴ have been reported. Although some of these methods are carried out under mild reaction conditions most of them require strong acidic media, a strong oxidising agent, rare, poisonous reagents or sometimes long reaction times for the regeneration of carbonyl compounds from oximes. Thus there is still a need to develop a new and facile procedure for the regeneration of carbonyl compounds from oximes.

Hexamethylenetetramine-bromine is an inexpensive reagent which has been reported as an oxidizing agent.¹⁵ Although there is a reference in the literature that indicates its application in other oxidative clevage reactions, ¹⁶ we found that in the absence of mineral supports the attempted cleavage of oximes is sluggish with hexamethylenetetramine-bromine even after prolonged reaction periods.

In recent years, the organic reactions on solid supports have attracted much attention because of their enhanced selectivity, milder reaction conditions and associated ease of manipulation.¹⁷ In continuation of our ongoing efforts in reagent supported reactions¹⁸ and in view of the established beneficial effects of the reagents on solid supports we examined various mineral supports such as clays, silica and alumina with hexamethylenetetramine-bromine and soon discovered that alumina allows the clean regeneration of the correspounding carbonyl compounds from oximes. When this supported reagent was refluxed with oximes in CH₂Cl₂ the corresponding carbonyl compounds were regenerated almost quantitatively (Table 1).

In a typical reaction 2 equiv of hexamethylenetetramine-bromine supported onto alumina was added to a stirred and refluxed solution of an oxime in dry CH₂Cl₂. The reaction mixture was refluxed until the reaction was complete. It was then filtered and washed with dichloromethane. Evaporation

of the solvent and column chromatography gave the corresponding carbonyl compounds in high yields (Table 1).

The formation of aluminium tribromide is possible in this reaction and deoximation can be carried out by the latter instead of hexamethylenetetramine-bromine. This possibility can be ruled out, because no trace of brominated products in aromatic rings were detected. The melting and boiling points of the products were compared with those of authentic samples (Table1).

In conclusion hexamethylenetetramine-bromine supported on alumina is a simple and inexpensive reagent for the regeneration of carbonyl compounds from oximes.

Experimental

All products were known and identified by comparison with authentic samples. Yields refer to isolated products. Hexamethylenetetramine-bromine supported on alumina was prepared by the reported procedure. ^{15b}

Deoximation of oximes(general procedure): Hexamethylene-tetramine-bromine supported on alumina (2.5 mmol) was refluxed with the appropriate oxime (1.5 mmol) in CH₂Cl₂ (25ml) for indicated time (Table1). After completion of the reaction (monitored by TLC), the solvent was evaporated to the dryness and the crude was directly subjected to column chromatography using pet ether –AcOEt (80–20) as eluent to afford the corresponding carbonyl compound (Table 1).

Received 11 July 2000; accepted 30 November 2000 Paper 00/444

References and Notes

- 1 T.G. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 2nd Ed. John Wiley & Sons Inc. Toronto, 1991; 172–223.
- 2 D.H.R. Barton, J.M. Beaton, L.E. Geller and M.M. Pechet, J. Am. Chem. Soc. 1961; 83, 4076, 4083.
- 3 J.R. Maloney, R.E. Lyle, J.E. Scavedra and G.G. Lyle, Synthesis, 1983, 808
- 4 J. Drabowicz, Synthesis, 1980, 125.
- 5 C.G. Rao, A.S. Radhakrishna, B.B. Singh and S.P. Bhalnagar, Synthesis, 1983, 808.
- 6 J.M. Aizpurua, M. Juaristi, B. Lecea and C. Palomo, *Tetrahedron Lett*, 1985, 41, 2903.
- 7 S.B. Shim, K. Kim and Y.H. Kim, *Tetrahedron Lett*, 1987, 28, 645.
- 8 R. Joseph, A. Sudalai and T. Ravendranathan, *Tetrahedron Lett*, 1994, 35, 54, 93.
- B.P. Bandgar, L. Kunde and J.L. Thote, *Synth Commun*, 1997, 27, 1149
- 10 H.D. Ayhan and E.A. Tangeli, *Tetrahedron Lett*, 1997, **38**, 7267.
- 11 D. Subhas, Bose and A. Venkate Narraiah, Synth Commun, 1999, 29(6), 937.
- 12 F. Chen, A. Liu, Q. Yan, M. Liu, D. Zhang and L. Shao, Synth Commun, 1999, 29(6), 1049.
- 13 M.M. Heravi, Y.Sh. Beheshtiha, M. Ghassemzadeh, R. Hekmatshoar and N. Sarmad, *Montash. Chem*, 2000, 131, 187.

^{*} To receive any correspondence. Email.mmheravi@azzahra.ac.ir

 $^{^{\}dagger}$ This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.

Table 1 Oxidative cleavage of oximes with hexamethylenetetramine bromine supported on alumina in non agueous condition

Entry	Substrate	Carbonyl compound	Reaction time (min)	M.p./B.p./C/torr		Yield
				Found	Reported ¹⁹	
1	John Million	CHO CHO	40	178–179/760	174–176/760	92
	500	4.35				
2	₂₀₀₀ 011 1200	J. GHO CHO	40	201–203/760	204–205/760	90
	OF THE STATE OF TH	HI,COMPANIES TO THE TEHO				
3	AND CHINCH	0	45	48–51	47–50	88
5	disconnection of the second	ģi	45	206-213/760	209–215/760	83
	C=C=NO=	J. 200				
	5,46	1.0×		00.00	07.00	04
	NO-	^.^.	55	28–30	27–29	81
		on,o ^{rriger}				
6	onjo (1979) Boli	e	50	215–219/760	218/760	82
	200					
7	1.00	0	60	73–77	75–77	78
	Constitution (1997)	discovery yes				
8	$\log_{10} \log_{10} 21 \times 100^{\circ}$	1000	45	198–200/200	199.3/200	85
	N. 20	\				
9	100 mm	and the second	40	194–196/760	197/760	90
	*****	100				
10	* C-		45	152–155/760	155/760	82
	8.6					

¹⁴ M.M. Heravi, D. Ajami, M.M. Mojtahedi, J. Chem. Res., 2000,

^{15 (}a) I. Yavari and A. Shaabani, J. Chem. Res, 1994, 274; (b) M.M. Heravi, D. Ajami and M.A. Nooshabadi, Iran. J. Chem. Eng., 1999, **18**(2), 88

¹⁶ B.P. Bandgar, S.B Admane and S.S Jare, J. Chem. Res., 1998, 154

^{17 (}a) J.H. Clark, Catalysis of Organic Reactions By Supported Inorganic Reagents, VCH Publisher, Inc, NY, 1994;

⁽b) M. Balogh and P. Laszlo, Organic Chemistry Using Clays, Springer - Verlag, Berlin, 1993.

^{18 (}a) M.M. Heravi, D. Ajami, M. Ghassemzadeh and M.M. Mojtahedi, Tetrahedron Lett, 1999, 40, 561; (b) M.M. Heravi, D. Ajami and M. Ghassemzadeh; Synthesis, 1999, 3, 393; (c) M.M. Heravi, D. Ajami, K. Aghapoor and M. Ghassemzadeh, Chem. Commun, 1999, 833.

¹⁹ Aldrich Catalogue/ Handbook of fine chemicals, 1990–1991.